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Employing a tight-binding formalism and perturbation theory, we theoretically demonstrate how weak fab-
rication disorder due to surface roughness dramatically reduces the band-edge performance of coupled-cavity
waveguides in semiconductor photonic crystal slabs. We find that surface roughness largely affects the band-
edge performance through the introduction of random variations in the individual cavity frequencies, �0, rather
than through variations in the tight-binding coupling coefficients, �. Using model roughness parameters com-
parable to state-of-the-art structures, the standard deviation of �0 is estimated to be ��0

�1�10−4 �0. High-
index-contrast fabrication imperfections are found to broaden the photon density of states at the band edge with
a characteristic linewidth of �e���0

4/3 / �2 �0��1/3. This implies a minimal band-edge group velocity of around
vg�c /120, consistent with experiments. For applications toward modified spontaneous emission, we show that
the characteristic linewidth �e is, unfortunately, a factor of 5 greater than the largest band-edge coupling rate
for which strong photon quantum dot band-edge interactions can occur. Although large Purcell factors can still
be achieved in the presence of disorder, an embedded semiconductor quantum dot then couples to a lossy
�disorder-induced� propagation mode, which may limit the potential applications in coherent quantum optics.
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I. INTRODUCTION

Light propagates in coupled-cavity waveguides �CCWs�
via the evanescent coupling of localized cavity modes.1,2

CCWs are currently under active interest within the optics
community since, in principle, they can support small group
velocities, either across their bandwidth when the separation
between the cavities is large or at their well-defined photonic
band edges. Slow light in CCWs has several significant ap-
plications including buffering and storing optical pulses3,4

and enhancing nonlinear optical interactions such as second-
harmonic generation.5 In addition, the small group velocity
at the band edge of CCWs potentially produces strong inter-
actions with atoms and quantum dots �QDs�; thus, CCWs
could be used for single-photon sources due to the large Pur-
cell factor and high directionality6,7 or alternatively could
serve as a test bed for the novel physics of band-edge quan-
tum optics.8

Photonic crystal �PhC� slabs �PhCSs� are an appealing
platform for CCWs as it is relatively straightforward to en-
gineer large arrangements of coupled cavities. The experi-
mental performance of early CCWs in PhCS �Refs. 9–11�
was limited by the low Q �quality factor� of the PhCS cavi-
ties available at the time. Cavities have since been designed
to minimize out-of-plane loss producing ultrahigh Q’s above
1�106.12,13 Waveguiding in CCWs based on these cavities
has also recently been demonstrated in experiments.13,14 A
key feature of intrinsic loss in CCWs in PhCSs is that it is
not solely determined by the Q’s of the constituent
cavities.15,16 Rather, the interference of the out-of-plane ra-
diation from the cavities can cause the Q’s of the CCW
modes to depend on the Bloch vector. It is typically found,
though, that the Q’s of the CCW modes remain within an
order of magnitude of the Q’s of the individual cavities.

From a theory and modeling perspective, an additional
advantage of CCWs is that the well-known tight-binding ap-

proach can be exploited,1 facilitating a way to include the
effects of fabrication imperfections that result in extrinsic
loss. In the tight-binding approximation, fabrication imper-
fections cause variations in the cavity frequencies, which are
termed as diagonal disorder, and in the coupling coefficients,
it is termed as off-diagonal disorder. Both types of disorder
are well researched in condensed-matter physics, e.g., by
Economou et al.,17,18 but less so in photonics. Steinberg et
al.19 considered diagonal disorder due to random variations
in the size of the dielectric cylinders of PhCs and demon-
strated that transmission bands are maintained so long as the
standard deviation of the cavity frequencies is smaller than
the CCW bandwidth. Mookherjea and Oh20 heuristically
considered off-diagonal disorder due to surface roughness in
general CCWs; by calculating the group velocity via the den-
sity of states �DOS�, they showed that minimal roughness of
a few nanometer limited the slowing factor—the ratio of the
band-center group velocity to the band-edge group
velocity—to less than 10. This result is broadly consistent
with experiment.21,22

In this paper, we critically examine the role of disorder-
induced surface roughness on the band-edge performance of
CCWs in PhCSs. Surface roughness can be characterized
from scanning electron microscopy �SEM� images,23 al-
though a quantitative characterization requires many Fourier
components,23 making the precise analysis of its effects dif-
ficult. A more standard and reliable approach is to model the
roughness as random variations in the dielectric function
about the perfect structure with a standard deviation of �e
and correlation length of lc.

24 Hughes et al.25 used this ap-
proach to successfully describe extrinsic loss in line-defect
waveguides in PhCSs and accurately reconciled theory with
experiment.26 Here, we adopt a similar approach to model
the effect of surface roughness on diagonal and off-diagonal
disorders in CCWs in PhCSs. We show how the broadening
of the band-edge DOS by the disorder can be quantified. We
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then examine the effect of the DOS broadening on the group
velocity and band-edge interactions with QDs. We find that
even state-of-the-art fabrication disorder will likely limit the
propagation speed in CCWs to no less than c /200. We also
find that it will be very difficult to get strong coupling at the
band edge due to disorder-induced softening of the band-
edge DOS. On the other hand, we find that reasonably large
Purcell factors should be possible even when disorder is
present, thus, opening the possibility that these structures
could be exploited to produce highly directional single-
photon sources.

The paper is organized as follows. In Sec. II, we present
our tight-binding formalism for calculating the modes and
the DOS for a coupled-mode system such as a CCW. This
formalism involves calculating the individual cavity modes
and mode frequencies as well as the tight-binding coupling
coefficients. In Sec. III, we examine the statistical effects of
surface roughness disorder on the individual cavity-mode
frequencies and the coupling coefficients. In Sec. IV, we
present the effects of the surface roughness on the DOS in a
CCW. In Sec. V, we discuss the consequences of surface
roughness on slow-light propagation and band-edge quantum
optics in CCWs. We present our conclusions in Sec. VI.

II. TIGHT-BINDING FORMALISM

We begin by presenting the tight-binding formalism for
CCWs. The CCW consists of a set of coupled defect cavities
that are arranged in the x direction with a period D. An
example CCW �to be discussed in detail later� is shown in
Fig. 1. We consider both infinite and finite CCWs composed
of N cavities. To obtain the dispersion relation for a CCW,
we employ the tight-binding approach. In this approach, the
�th CCW complex mode is expanded in terms of the N in-

dividual cavity modes, M̃q�r−Rq�, as M̃�
CCW�r�

=�q=1
N vq�M̃q�r−Rq�, where Rq=qDx̂ is the position of the

qth cavity and x̂ is a unit vector along x. The �leaky� mode of

the qth cavity has a �complex� frequency �̃q and is normal-
ized according to the condition

�
Vc

d3r	q�r��M̃q�r − Rq��2 = 1, �1�

where Vc is the computed field domain �e.g., from finite-
difference time domain �FDTD�	 and 	q�r� is the �real� di-
electric constant of the structure with a single cavity centered
at r=Rq. The frequency is complex due to the finite lifetime
of the mode arising from intrinsic out-of-plane leakage. The
CCW modes are then the eigensolutions to

�I + K�−1� v = �v , �2�

where K= ��pq	 with �pq=
dr
	q�r�M̃p
��r−Rp� ·M̃q�r−Rq�

and 
	q�r��	�r�−	q�r�, where 	�r� is the dielectric function
of the structure with the full set of cavities in the CCW. The

other matrices are defined by: v��v�q	, �=Diagonal��̃q
2,

and �=Diagonal��̃�k��2, where �̃�k�� is the frequency of
the CCW mode with mode index k�.

For the CCW of Fig. 1, in the absence of surface rough-
ening, all of the cavities are identical and differ only by their

position; thus M̃q�r�=M̃0�r� and �̃q=�̃0. In Fig. 2 we plot
the x and y components of the single-cavity mode field

M̃0�r�. The chosen CCW has a period of D=5d, which
makes the cavity coupling sufficiently weak to employ the
nearest-neighbor tight-binding �NNTB� approximation. In
this approximation,
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FIG. 1. Schematic of the CCW composed of PhCS cavities
formed by the local width modulation of a line-defect waveguide.
The PhCS period is d, the CCW period is D=5d, and the width of
the line defect is W=�3d.
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FIG. 2. Cavity mode �x /y field� of the PhCS cavity formed by
the local width modulation of a line-defect waveguide.

FUSSELL, HUGHES, AND DIGNAM PHYSICAL REVIEW B 78, 144201 �2008�

144201-2



�pq = � �� dr
	0�r�M̃0
��r + Dx̂� · M̃0�r� �3�

if p=q�1 and is zero otherwise. In the nearest-neighbor
approximation, the dispersion relation that follows from Eq.
�2� is27

�̃�k�� = �̃0�1 − � cos�k�D�	 , �4�

where k�=�� / ��N+1�D	, where �=1. . .N. In an infinite
CCW with periodic boundary conditions, the same disper-
sion relation holds,1 but k�→k with −� /Dk� /D and
the CCW mode expansion coefficients become vqk=eiqkD.

The analytic form of Eq. �4� results in simple expressions
for the local density of states �LDOS�. We obtain the LDOS
from the electric-field Green tensor.28 For coupling to a QD

with transition dipole �=�d̂, the projected LDOS is ob-

tained from the total Green tensor, G̃, using

LDOS��;r� = − 2�/�c2 Im�d̂ · G̃��;r,r� · d̂� . �5�

The total Green tensor is the solution to

� � � � G̃��;r,r�� −
�2

c2 	�r�G̃��;r,r�� = − I
�r − r�� .

�6�

However, we typically calculate the transverse Green tensor,

G̃T, which is the solution to

� � � � G̃T��;r,r�� −
�2

c2 	�r�G̃T��;r,r�� = − I
T�r − r�� ,

�7�

where 
T�r−r�� is the transverse Dirac delta function.29 For
media with a real dielectric constant, 	�r�, it follows that30

G̃��;r,r�� = G̃T��;r,r�� −
I
T�r − r��
��/c�2	�r�

+
I
�r − r��
��/c�2	�r�

. �8�

Thus, we can also express the LDOS in terms of the trans-
verse Green tensor,

LDOS��;r� = − 2�/�c2 Im�d̂ · G̃T��;r,r� · d̂� . �9�

The transverse Green tensor has a well-known expansion
over the true transverse modes of the structure.28 However,
the true modes form a continuum and extend over all space
and are thus an impractical basis for most problems. To ad-
dress this, we recently showed that in resonant structures
such as a CCW composed of high-Q cavities, an accurate
expression for the transverse Green tensor can be obtained
by projecting it onto the resonant modes �the CCW modes in
our case�.31 In the nearest-neighbor approximation, the pro-
jection yields the tight-binding Green tensor given by8

G̃TB
T ��;r,r�� =

c2

2�
�

�
�

p,q=1

N

M̃p�r�
vp�u�q

� − �̃�k��
M̃q

��r�� ,

�10�

where u�v−1= �u�p	. The LDOS is then obtained by using
Eq. �10� for the Green tensor in Eq. �9�, yielding

LDOS��;r�

= −
1

�
�

�
�

p,q=1

N

Im�d̂ · M̃p�r�
vp�u�q

� − �̃�k��
M̃q

��r� · d̂�� .

�11�

As the M̃q has a very small spatial overlap, if a QD is at r
near the center of the q0th cavity, then �M̃q0

�r��� �M̃p�r�� for
p�q0 and the LDOS simplifies to

LDOS��;r� = −
1

�	�r�V�r���=1

N

Im� vqo�u�qo

� − �̃�k��
� , �12�

where

V−1�r� � 	�r��M̃q0
�r� · d̂�2 �13�

is the spatially dependent mode volume. If r is at a mode

maximum and d̂ is parallel to M̃q0
�r�, then V�r�=Veff, where

Veff is the “usual” effective mode volume commonly used,
e.g., in calculations of the Purcell factor or enhanced spon-
taneous emission factor.32 For the cavity mode computed in
Fig. 2, the effective mode volume is Veff�0.175 �m3.

As we can see from Eq. �12�, the LDOS is in fact just the
DOS, ����, divided by 	�r�V�r�,

LDOS��;r� =
����

	�r�V�r�
. �14�

This can be verified by the fact that the integral of ���� over
� gives the number of quasimodes in the system. This is
useful since, while it is the LDOS that primarily determines
the spontaneous emission dynamics of a QD, we can analyze
the dynamics by studying the much simpler quantity ����.
This point has been exploited before for regular planar pho-
tonic crystal waveguides.6,33

In a finite CCW, we obtain

���� = −
1

�
�
�=1

N

Im� vqo�u�qo

� − �̃�k��
� , �15�

while in an infinite CCW u�q0
=vq0�

† =e−iqkD and we can do
the sum explicitly to obtain simply

���� = −
1

�
Im� 1

��� − �̃u��� − �̃l�
� . �16�

The structure that we model is the CCW first introduced
by Kuramochi et al.13 shown in Fig. 1. We choose this struc-
ture due to its low intrinsic loss and because it has been
experimentally investigated. This planar structure includes a
high-Q PhCS cavity formed by the local width modulation of
a line-defect waveguide.26 The PhCS consists of a hexagonal
array of cylindrical air voids of radius a=0.26d, where d
=420 nm is the period in a silicon �or high-index� dielectric
slab of refractive index n=3.46 and height h=0.5d. The cavi-
ties are formed by moving the air-voids labeled “A” in Fig. 1
away from the waveguide by 0.15d and the air-voids labeled
B by 0.075d. The cavity mode is calculated using the full
three-dimensional �3D� FDTD method. As the cavity mode is
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leaky, it is characterized by a complex frequency, �̃0=�0
− i�0= �0.260− i3.37�10−6�2�c /d, resulting in a quality fac-
tor of Q0=38 600. Using Eq. �3�, the tight-binding coupling
coefficient is found to be �=0.002 65. Note that while � is in
principle complex,16 for this structure the imaginary part is
sufficiently small that it can be neglected.

In Fig. 3, we plot the DOS of the Kuramochi et al. system
for frequencies that span the CCW band for both N=301
�Eq. �15�	 and � �Eq. �16�	. The midband oscillations of the
N=301 DOS are due to the finite-size Fabry-Perot effects. At
the band edges, the DOS exhibits the expected inverse
square-root behavior. In a lossless CCW ��0=0� with N=�,
the band-edge DOS would be singular. When loss is included
��0�0�, the band-edge DOS is finite and the square-root line
shape about the band edge broadens. However, in our CCW,
the DOS and corresponding LDOS at the band edges are
large enough for QD-photon interactions to enter the strong-
coupling regime.8 It is also strong enough to result in the
slowing of light by several orders of magnitude. The key
questions that we address in the remainder of this paper are:
What are the effects of surface roughening on the DOS, and
how do the changes in the DOS affect QD-photon interac-
tions and slow-light modes? In Sec. III we consider the ef-
fects of surface roughness on the individual cavity-mode fre-

quencies, �̃0, and on the tight-binding coupling coefficients,
�.

III. INFLUENCE OF SURFACE ROUGHNESS ON MODE
FREQUENCIES AND COUPLING COEFFICIENTS

The true dielectric function of a fabricated CCW, 	t�r�,
includes small random variations due to the fabrication pro-
cess. As a consequence, 	t�r� differs from the dielectric func-
tion of the ideal structure, 	�r�, by the function �	�r�
�	t�r�−	�r�. In the tight-binding model of Eq. �2�, �	�r�
results both in variations in the diagonal elements �̃0 �con-
sequently called diagonal disorder� and variations in the off-
diagonal elements � �consequently called off-diagonal disor-
der�. Both of these forms of disorder have been well
researched in solid-state physics17 primarily to understand
the effects of disorder on conductivity. Here, we first exam-
ine the influence of diagonal disorder on the DOS and near
the end of this section consider the effects of off-diagonal
disorder.

We account for diagonal disorder by employing first-order

perturbation theory to determine the variations in the �̃0.
This is appropriate for the weak fabrication disorder that we
anticipate to be present in a state-of-the-art PhCS. We define
the disorder perturbation on the ideal dielectric structure with
a single cavity at r=0 as �	0�r��	0t�r�−	0�r�, where 	0t�r�
is the true dielectric function for the system with a single
cavity and disorder and 	0�r� is the dielectric function of the
same system without disorder. Ignoring the effects of local-
field corrections and boundary conditions of the field com-
ponents across the perturbed hole interface �which we briefly
discuss below�, the first-order shift in the mode frequency
can be calculated using19


�̃0 � −
�̃0

2
�

Vc

d3r�	0�r��M̃0�r��2, �17�

where, as usual with perturbation theory, the unperturbed �̃0

and M̃0�r� are used. Because �̃0 is complex and the integral
in Eq. �17� is real, we see that the ratio of the real to imagi-

nary parts of the perturbed frequency, �̃0+
�̃0, is the same
as for the unperturbed frequency. Thus, to the first order in
the perturbation, the Q of the cavity mode is unchanged.
Therefore, in what follows we will largely concern ourselves
with the real part of the frequency shift, which we denote by

�0.

In the structure that we are modeling �see Fig. 1�, the
cavity modes are 3D TE-type modes. Therefore, they can
have some electric-field components that are perpendicular
to the cylinder boundaries and are thus discontinuous across
the cylinder boundaries. If Eq. �17� is to be an accurate
method for calculating the frequency shift, the mode field of
the perturbed structure should be similar to that of the unper-
turbed structure in the vicinity of the cylinder boundaries.
We would expect this to be the case if the component of the
field component perpendicular to the cylinder boundary is
relatively small relative to the tangential component for the
unperturbed structure. From Fig. 2 we see that the tangential
component appears to be generally larger than the perpen-
dicular component �as desired�. However, in addition, for
high-index contrast structures there can be local-field correc-
tions that cause an asymmetry in the disorder function with
respect to the interface.34 Although in principle we should
properly include local-field effects and carefully account for
parallel and perpendicular components across the perturbed
dielectric interface, other works have shown that when ap-
plied to a disorder problem such as ours, these corrections
largely average out35 or primarily result in an overall system
shift of the single-cavity resonance.36 Thus, we do not in-
clude such effects here.

To estimate the accuracy of Eq. �17� for our structure, we
have varied the radii of the air voids in a “selected” random
fashion �shown in bold� in Fig. 2 by several nanometers,
which is comparable to the scale of the surface roughness
that we will examine shortly. We then calculated 
�0 nu-
merically using a FDTD simulation and compared with 
�0
that is found using Eq. �17�. We note that the small positional
shifts result in �	�r� being nonzero only near the air-void
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FIG. 3. DOS in periodic �N=�� and finite �N=301� CCWs.

FUSSELL, HUGHES, AND DIGNAM PHYSICAL REVIEW B 78, 144201 �2008�

144201-4



boundaries, and so we only need to carry out the integrations
around the surface of the air voids. To calculate Eq. �17�,
M̃0�r� is approximated using an interpolation function to ob-
tain field points on the interface of the air voids through the
discrete mesh of field points generated by the FDTD simu-
lation. We find that the frequency shift given by our first-
order calculation agrees with the “numerically exact”
�FDTD� result to within 10%. This degree of accuracy is
more than sufficient for the present work as a 10% error is
more than the uncertainty in the roughness parameters. The
inclusion of the local-field corrections will be dealt with in
future work, however, such corrections will not affect signifi-
cantly the physics and predictions which we highlight here.
We further emphasize that similar approaches presented
elsewhere,25 on the subject of disorder-induced waveguide
loss �more details given below�, have been very successful in
their predictive capabilities and have explained a number of
recent experiments �e.g., Kuramochi et al.26�.

We model fabrication disorder by adopting the approach
of Hughes et al.25 Their approach is similar to the technique
of the well-known Payne and Lacey approach for ridge
waveguides24 but specialized to periodic media such as
PhCSs. In PhCSs, the dominant fabrication imperfection is
surface roughness in the form of vertical striations in the
sidewalls of the air voids. The effect on the dielectric func-
tion of a single air void is demonstrated schematically in Fig.
4. The striations cause random variations in 	0t�r�, which are
characterized by the deviation �	0�r�, such that 	0t�r�
=	0�r�+�	0�r�. Now, by construction, �	0�r� is such that the
ensemble average of �	0�r� is zero,

��	0�r�� = 0, �18�

where �·� denotes the average over an ensemble of structures.
Thus, if we take the average shift of an ensemble of our
structures, we find that

�
�0� = −
�0

2
�

Vc

d3r��	0�r���M̃0�r��2 �19�

=0. �20�

Note that while there may be a frequency shift due to rough-
ness in an individual structure, the average shift over many
structures will be zero—at least within the limitations of our
model. To determine the statistics of the frequency shifts of
such an ensemble, we calculate the variance in the frequency
shift of the ensemble. This is given by

��
�0	2� �
�0

2

4
�

Vc

�
Vc

d3rd3r��M̃0�r��2�M̃0�r���2

���	0�r��	0�r��� . �21�

The standard deviation of the frequency shifts in the en-
semble due to the perturbation is then given by ��0
=���
�0	2�.

The roughness function is incorporated in �	0�r� as fol-
lows. In a PhCS containing multiple air voids, the center
position of the lth air void is denoted by �l, where �
= �� ,�� is the in-plane coordinate. For an air void at �l, the
roughness function is given by �R��̃�� ,�l�	, where
�̃�� ,�l�=arctan��� sin �−�l sin �l� / �� cos �−�l cos �l�	 is
the translated coordinate. For an air void at the origin,
�R��̃�� ,�l�	=�R��� as above. By expanding the exact di-
electric profile, which contains a Heaviside step function at
each hole interface, to first order, then

�	0�r� � �	2 − 	1�H�h/2 − �z���
l=1

Nc

R��̃��,�l�	
�a − ��� − �l��� ,

�22�

where 	1�	2� is the dielectric constant outside �inside� the air
voids, H�z� is the Heaviside step function, and Nc is the
number of air voids of the cavity; the slab thickness is h, and
the slab center coincides with z=0. As the roughness is due
to vertical striations in the air-void walls, the air-void radius
is a random function of angle, R���, but is independent of z.
The difference from ideal is then described by the roughness
function �R���=R���−a for each hole �in a shifted-
coordinate scheme�. The roughness function has an ensemble
average of ��R����=0 and an ensemble root-mean square of
�e= ���R2����	1/2. The roughness function is also correlated
as a function of �, which is described using a model expo-
nential autocorrelation function,

C�� − ��� = ��R����R����� , �23�

=�e
2e−a���,���/lc, �24�

where

���,��� = ��� − ��� if 0  �� − ��� � � ,

2� − �� − ��� if �  �� − ��� � 2� ,
�
�25�

is the angular displacement between two points on the cir-

R�Φ �

a

Σe

lc

air	void
�n�1�

Si slab
�n�3.46�

FIG. 4. Surface roughness on the circumference of an air void.
The radius of the air void becomes a function of angle R���. The
surface roughness is characterized by a standard deviation of �e and
a correlation length of lc.
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cumference of the air void and lc is the in-plane correlation
length. As can be seen in Fig. 4, �e describes the character-
istic amplitude of the roughness about the circumference,
while lc describes the characteristic correlation length of the
deviations along the circumference. For high-quality fabri-
cated silicon PhCSs, �e�3 nm and lc�40 nm.26 In our
PhCS �d=420 nm�, the corresponding normalized values are
�e�0.007d and lc�0.1d.

We now return to the calculation of the standard deviation
in the frequency shift for an ensemble of structures. Inserting
Eq. �22� into Eq. �21�, and then using Eq. �24� to take the
ensemble average, we obtain the standard deviation

��0
� �e�	2 − 	1�

�0

2 ��
l=1

Nc �
−h/2

h/2 �
−h/2

h/2

dzdz��
0

2� �
0

2�

d�d��

�e−a���,���/lc�M̃0

��xl + a cos���,yl + a sin���,z	�2�M̃0

��xl + a cos����,yl + a sin����,z�	�2�1/2

, �26�

where �xl ,yl� is the in-plane coordinate of the lth air void.
Having examined the effect of surface roughness on the

distribution of individual cavity-mode frequencies �diagonal

disorder�, we now treat the effect of the surface roughness on
the tight-binding coupling coefficient �off-diagonal disorder�.
To do this, we simply add �	�r� in our definition of � given
in Eq. �3�. This yields a change in the coupling coefficient by
an amount


� � �
Vc

d3r
	0t�r�M̃0�r + Dx̂� · M̃0
��r� , �27�

where 
	0t�r���	�r�−�	0�r�, and �	�r� is the difference
between the exact and the perturbed dielectric functions for
the full coupled-cavity waveguides �CCW� structure. The
statistical properties of 
� are again determined by the sta-
tistical properties of R���. As �R����=0, it follows immedi-
ately that the mean perturbation is zero, i.e., �
��=0. How-
ever, the standard deviation of the perturbation is not zero
but is given by ��= ��
�2�	1/2, where


�2 � �
Vc

�
Vc

d3rd3r�
	0t�r�M̃0�r + Dx̂� · M̃0
��r�
	0t

��r��M̃0�r� + Dx̂� · M̃0
��r�� �28�

is the amplitude squared of the perturbation. Inserting Eq.
�22� into Eq. �28�, and then using Eq. �24� to take the en-
semble average, we obtain the standard deviation

�� = ��
�2�	1/2, �29�

��e�	2 − 	1���
l=1

Nd �
−h/2

h/2 �
−h/2

h/2

dzdz��
0

2� �
0

2�

d�d��e−a���,���/lcM̃0�xl + a cos��� + D,yl + a sin���,z	 · M̃0
�

��xl + a cos���,yl + a sin���,z	M̃0
��xl + a cos���� + D,yl + a sin����,z�	 · M̃0�xl + a cos����,yl + a sin����,z�	

− �
m=1

Nd �
−h/2

h/2 �
−h/2

h/2

dzdz��
0

2� �
0

2�

d�d��e−a���,���/lcM̃0�xm + a cos��� + D,ym + a sin���,z	 · M̃0
�

��xm + a cos���,ym + a sin���,z	M̃0
��xm + a cos���� + D,ym + a sin����,z�	 · M̃0

��xm + a cos����,ym + a sin����,z�	�1/2

, �30�

where Nd=14 is the number of air voids shifted to form the
central cavity of the CCW �see Fig. 1�, �xl ,yl� are the coor-
dinates of the air voids before they are shifted, and �xm ,ym�
are the coordinates after they are shifted.

In Fig. 5, we plot ��0
and �� as functions of lc. As both

��0
and �� are proportional to �e, we set �e=3 nm �a nomi-

nal value for high-quality structures� to simplify. We also
adopt normalized units, d /2�c, for ��0

so it can be directly
compared with ��. Note that, from Eq. �4�, to compare the
relative effects of diagonal and off-diagonal disorders, we
should compare ��0

/�0 to ��, where for our structure

�0�0.26�2�c� /d. The key result is that first-order perturba-
tion theory gives significant nonzero values for ��0

. This is
because the mode field on the air-void boundaries, shown in
Fig. 2, strongly varies as a function of � producing nonzero
values in the double integral over � in Eq. �26�. In planar
and fiber waveguides, by contrast, it is clear that the first-
order perturbation theory will give ��0

=0 irrespective of lc

�at least within the limits of our model� as the mode fields do
not vary on the waveguide surfaces.

Examining Fig. 5 in more detail, we can see that ��0
and

�� have a similar dependence on lc but that ��0
/�0 is almost
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an order of magnitude larger than ��. This result is consistent
with 
�0 in Eq. �17� and 
� in Eq. �27� having similar func-
tional forms. The main difference is that the mode fields are
displaced in the calculation of �, and thus �����0

/�0. For
roughness parameters of �e=3 nm and lc=40 nm, ��0

/�0

=2.4�10−4 while ��=3.4�10−5. From this, we expect that
the effect of off-diagonal disorder on the density of states
�DOS� will be much less than the effect of diagonal disorder
as we show explicitly in Sec. IV. An important property of
both ��0

and �� is that they are much more sensitive to �e

than lc. Their dependence on �e is clearly linear. The depen-
dence on lc, on the other hand, is approximately square root
as shown in Fig. 5. For the wide range of lc typically seen in
experiment, 20� lc�100 nm, ��0

and �� only vary by a
factor of 2. We consider a lower bound for lc to be lc
�3 nm. However, even if fabrication could be improved to
reduce lc from lc=20 to 3 nm, ��0

and �� would only be
improved by a factor of 3.

The engineering task of minimizing disorder is to search
for cavity modes that overlap least with the surfaces of the
air voids as is clear from Eqs. �26� and �30�. We have exam-
ined the cavity modes of most of the known high-Q PhCS
cavities and ��0

is smallest for the Kuramochi cavity we
have employed here. For the Noda cavity �Q�50 000�,12

��0
/�0�3.8�10−4 when �e=3 nm and lc=40 nm. Disor-

der is minimal in these two cavities because they are both
essentially line-defect sections with cavity-mode fields
strongly concentrated in large dielectric regions �see Fig. 2�.
By contrast, for the quadrupole mode of a point defect in a
square lattice of air voids �Q�50 000�,37 ��0

/�0�1.3
�10−3, while for the hexapole mode of a point defect in a
hexagonal lattice �Q�106�,38 ��0

/�0�1.1�10−3.

IV. DISORDER-INDUCED TRUNCATION OF THE
DENSITY OF STATES

We now examine the effects of diagonal �variations in �0�
and off-diagonal disorders �variations in �� on the DOS of a
CCW. This problem has been addressed in detail for one-
dimensional �1D� periodic structures in solid-state physics.17

Here, we apply the semianalytic methods of solid-state phys-
ics to disorder in periodic CCWs. We also use Monte-Carlo
simulations to verify the semianalytic results and model dis-
order in finite CCWs.

We first examine diagonal disorder. It is reasonable to
assume that the frequency shifts of individual cavities follow
the Gaussian distribution

P�0
��� =

1
�2���0

e−�2/�2��0

2 �. �31�

This is because 
�0 is essentially a weighted summation of
the finitely correlated random variable R���, and the central
limit theorem for m-dependent variables39 thus applies. In
our finite CCW, we determine the ensemble average of the
DOS with disorder, ������, using a Monte-Carlo simulation.
In each step, random shifts �
�0	i with probability distribu-
tion P�0

��� are applied to the elements of � in Eq. �2�. The
eigenvalues of the perturbed equation are then calculated and
the DOS is determined using Eq. �15�. In the calculation,
2500 separate simulations are performed, and ������ is ob-
tained by taking the average of ���� at each frequency.

The average DOS can also be calculated semianalytically
using the coherent-potential approximation �CPA�.17 Such an
approach is essential for infinite CCWs where Monte-Carlo
simulations cannot be employed. In the CPA, the average
effect of disorder is captured by a frequency-dependent self-
energy ����. The self-energy is the solution to17

� d��P�0
����

��

1 − ��� − ����	��� − ����	
= 0. �32�

The simple form of ���� in a CCW makes numerically solv-
ing Eq. �32� straightforward. The average DOS is then given
by ������=���−����	.

In Fig. 6, we plot the DOS with diagonal disorder for
surface roughness parameters of �e=3 nm and lc=3 and 40
nm. In the Monte-Carlo simulations we take a finite CCW
with N=301. As can be seen, the DOS in the infinite CCW
calculated using the CPA is an accurate and smooth repre-
sentation of the DOS in the finite CCW calculated using the
Monte-Carlo method. The oscillations in the finite structure
near band center are simply the Fabry-Perot oscillations due
to the finite size just as in Fig. 3. The disorder has little effect
on the midband DOS or the bandwidth of the CCW. The
main effect is to broaden the band-edge peak in the DOS. For
a state-of-the-art correlation length of lc=40 nm, the broad-
ening dramatically reduces the peak LDOS by roughly a fac-
tor of 2.5. We also employ lc=3 nm as an approximate the-
oretical lower limit, below which the lattice constant of the
dielectric material prevents further refinement. At this level,
broadening is smaller but still significant.

To provide further insight on the DOS broadening caused
by diagonal disorder, we determine the dependence of the
broadening on the key parameters. First, we note that ������
can be approximated by �dis���=���� given by Eq. �16� but
with �0 replaced with an effective linewidth �eff, which in-
cludes the disorder-induced broadening. Furthermore, we
know from recent analysis19 that CCW performance de-
creases as disorder increases relative to the CCW bandwidth
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�����
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FIG. 5. Cavity-frequency and coupling-coefficient disorders.
The normalized standard deviation of �0, ��0

d /2�c, and the stan-
dard deviation of � and �� are plotted for roughness with �e

=3 nm as a function of correlation length lc.
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2 �0�. The relation between band-edge broadening and
CCW bandwidth can be quantified by recognizing that the
DOS with diagonal disorder is invariant when the normal-
ized frequency, ��=� /v, is employed, where v
=��0

4/3 / �2 �0��1/3 is the scaling parameter.18 Assuming a lin-
ear relation between �eff and v, we find from regression
analysis that

�eff �
1
�2

��0

4/3

�2 �0��1/3 + �0. �33�

In Fig. 6, we plot �dis��� using �eff �labeled as “approx”�
showing that it is a good approximation to ������. For lc
=3 nm, �eff=6.8�10−6 with a corresponding effective Q of
Qeff=19 000. For lc=40 nm, �eff=1.9�10−5 with a corre-
sponding effective Q of Qeff=6800. Recalling that Q0
=38 600, extrinsic loss due to diagonal disorder is thus much
greater than intrinsic loss. Although this simple model of the
DOS accurately captures the width and height of the band-
edge DOS, it does not accurately capture the change in the
shape of the DOS at the band edge; in contrast to our sim-
plified model, the calculated diagonal disorder produces a
small increase in the CCW bandwidth and steepens the DOS
at the band edge.

We next examine the effects of off-diagonal disorder on
the DOS. In Fig. 7, we plot the DOS with off-diagonal dis-
order for surface roughness parameters of �e=3 nm and lc
=40 nm. This is done in the finite CCW using a Monte-

Carlo simulation. The CPA can also be used17 but requires
more work than the diagonal case. We approximately quan-
tify the DOS broadening by choosing �eff to fit �dis��� to
������. The result is �eff=4.0�10−6, which is only margin-
ally larger than the unperturbed value of �0=3.37�10−6.
The effect of off-diagonal disorder is thus small compared to
diagonal disorder. Note also that off-diagonal disorder does
not significantly change the shape of the DOS. It is clear that
diagonal disorder will dominate off-diagonal disorder even
when ��0

/�0��� as the former is a first-order perturbation
to the CCW mode frequencies, while the latter is a second-
order perturbation.

We close this section by noting that the results for both
the Monte-Carlo and CPA simulations are ensemble averages
over many structures. That is, the calculated DOS is the av-
erage DOS that we would obtain if the DOS of many struc-
tures were measured. In any given structure and at any given
point in that structure, the DOS �LDOS� could be consider-
ably different than that presented. What our results provide is
what we would expect to see on average in such structures.
This motivates the need to perform experimental measure-
ments over many samples and present the average. Only then
can we have confidence in what is going on for a specific
design or nominally fabricated structure. This point, although
obvious, is rarely pointed out or investigated by experimental
groups as it is tempting to measure and report the “best mea-
sured” samples.

V. IMPLICATIONS FOR SLOW LIGHT AND BAND-EDGE
INTERACTIONS

Coupled-cavity waveguides can potentially support very
low group velocities, either across their bandwidth when � is
small or at their band edges. The effect of disorder on group
velocities can be determined approximately using the DOS.20

As ����d�= �̄�k�dk, where �̄�k� is the DOS in k space, the
group velocity is given by the DOS according to
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FIG. 6. DOS in a CCW with diagonal disorder. The disorder is
for surface roughness with �e=3 nm, where �a� lc=3 and �b� 40
nm. The average DOS is calculated numerically using the Monte-
Carlo method and semianalytically using the CPA. The approximate
DOS obtained using �eff is also shown.
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FIG. 7. DOS in a CCW with off-diagonal disorder. The disorder
is for surface roughness with �e=3 nm and lc=40 nm. The aver-
age DOS is calculated using the Monte-Carlo method. The approxi-
mate DOS is calculated using �eff=4.0�10−6. The DOS with no
disorder is shown for reference.
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vg �
d�

dk
,

=
�̄�k�
����

,

=
D

�����
. �34�

The group velocity is thus simply inversely proportional to
the DOS.

We first use the DOS in Fig. 3 to examine the effect of
intrinsic loss on slow light in CCWs. In the absence of sur-
face roughness, the minimum propagation speed of light in
the structure is limited by the linewidth of the individual
cavities. In this ideal �intrinsic� case, the minimum group
velocity occurs at the band edge and from Eqs. �16� and �34�
it is found to be given approximately by

vg
min = D�4�0 �0� . �35�

For our CCW, this results in a minimum �intrinsic� band-
edge group velocity of vg=c /330.

We now use the ensemble-averaged DOS in Fig. 6 to
examine the effect of diagonal disorder on slow light. In this
case, the group velocity that we obtained is an effective
ensemble-averaged group velocity. For surface roughness pa-
rameters of �e=3 nm and lc=3 nm, using Eq. �34� the
band-edge group velocity is found to be vg=c /220. Thus,
even at the theoretical lower limit for surface roughness, the
velocity of slow light in CCWs in PhCSs remains high. For
more realistic surface roughness parameters of �e=3 nm
and lc=40 nm, the band-edge group velocity is found to be
vg=c /120. Despite employing a different waveguiding
mechanism, these values appear to be consistent with the
experimental values of vg�c /100 �Ref. 40� and c /300 �Ref.
41� that have been observed in silicon line-defect
waveguides in PhCSs at wavelengths of ��1500 nm, al-
though, as is now well accepted, these modes are very lossy
and are dominated by back-scatter losses.

An approximate expression for minimum group velocity
can be obtained by simply substituting �eff with �0 in Eq.
�35� to give

vg
eff = D�2�effB , �36�

where B�2 �0� is the width of the band. This expression
gives good agreement with the calculated results for the two
different values of lc discussed above. The above expression
should be approximately correct for other waveguides such
as a line-defect waveguide as long as �eff can be determined;
However, the precise expression for �eff will not be given by
Eq. �33�. In cases where �eff��0, we can use Eq. �33� to
obtain the following simple expression for the minimum
group velocity:

vg
eff =

D��0��1/3

27/12 ��0

2/3. �37�

Thus, from Eq. �26� we see that when surface roughness
dominates, the minimum group velocity scales approxi-
mately as vg

eff��0�1/3�e
2/3.

Our numerical results for the DOS �and hence the group
velocity� are calculated for a finite CCW with N=301. We
have chosen this number because the DOS near band edge
for this finite structure is essentially identical to that of an
infinite structure. We could choose a somewhat smaller N,
but for much smaller values of N or away from band edge,
the results from the DOS of a finite structure would not be
accurate. Furthermore, when N is small, the concept of group
velocity becomes unclear and certainly cannot be calculated
simply using the DOS.

We now briefly consider the group velocity at band center.
From Figs. 3 and 6, we see that the DOS for the structure at
band center is almost unaffected by surface roughness. Thus,
the group velocity at band center is essentially the same, both
with and without surface roughness. Again using Eqs. �16�
and �34� the band-center group velocity is found to be given
approximately by

vg
max = D �0� . �38�

For the structure considered, this gives a midband group ve-
locity of vg�c /47. Of course, if the coupling becomes
weaker and/or the spacing between cavities increases, this
maximum velocity will decrease. However, vg

max will remain
independent of the degree of surface roughening and will be
given by Eq. �38� as long as the width of the band is much
larger than the effective broadening; that is, as long as
�0� /�eff�1. For our CROW with �e=3 nm and lc=3 nm,
�0� /�eff�170.

The sharp peak in the DOS at the band edge of CCWs
could potentially produce strong interactions with embedded
quantum dots �QDs�. Much of the early work on band-edge
quantum optics was performed using the isotropic band-edge
model for the DOS with 1 /��−�l. The interesting feature of
a CCW is that the isotropic model applies directly. Equation
�16� is essentially the isotropic model but with both the
lower and upper band edges. Furthermore, loss is included in
a very simple way via the complex �̃l and �̃u. This makes it
possible to parametrize the effect of loss on band-edge inter-
actions.

The strong coupling between an atom or QD and a single
cavity is a well-known problem.42 The coupling coefficient
between a QD and a cavity mode is given by

g = �� �a

2�	0
�M̃0�rQD� · d̂� , �39�

where �a is the QD transition frequency and rQD is the QD
position. If the linewidth of the cavity resonance, �0, is larger
than the nonradiative linewidth of the QD, �a, then the con-
dition for strong coupling is43
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2g � �0. �40�

The condition is that the Rabi frequency, �R=2g, of the
coupling between the QD and the cavity mode is greater than
the rate of decay out of the cavity mode.

At the band edge of a CCW, the Rabi frequency is8,44

�R = g4/3/�2�a��1/3. �41�

When disorder is included, the effective linewidth of the
band edge is given by �e in Eq. �33�. The condition for
strong coupling at the band edge thus becomes

�R � �eff. �42�

Employing Eqs. �33� and �41� and assuming �0��eff, the
condition simplifies to

g �
1

23/8��0
. �43�

Interestingly, this condition is independent of the bandwidth
of the CCW and is simply determined by the QD coupling
coefficient and the level of diagonal disorder.

For a typical self-assembled semiconductor QD with a
dipole moment of �=30 D, which is aligned optimally with
the cavity mode �in polarization and spatial position�, the QD
cavity-mode coupling coefficient in our cavity is g=9 GHz.
Equation �43� consequently implies that ��0

must be below
the critical value of ��0

c =11 GHz in order to achieve strong
coupling. For roughness parameters of �e=3 nm and lc
=40 nm, however, ��0

=45 GHz, which is a factor of 4
above the critical value. For lc=3 nm, the disorder improves
to ��0

=14 GHz, which is still a factor of 5/4 above the
critical value. We note that the critical value is only indicated
when the QD decay dynamics becomes nonexponential �of
course, neglecting the nonexponential behavior of nonradia-
tive decay at higher temperatures usually mediated by
electron-phonon or nonlinear interactions45�. To see the ef-
fect of the formation of a quasistable state at a band edge,44

��0
���0

c /5.8 For state-of-the-art fabrication, disorder due to
surface roughness is thus still well over an order of magni-
tude greater than that required to see the interesting quantum
optical effect predicted at a photonic band edge.8,44

Although the disorder appears to destroy the possibility of
strong-coupling dynamics at the band edge, at least for nomi-
nal QD dipole moments, the CCW with a QD could still be
used as a fast directional single-photon source due to its large
Purcell factor, Fp, at the band edge. To clarify this point, we
compare the peak Purcell factor Fp

CCW of the CCW with dis-
order to the Purcell factor Fp

cav of one of the cavities in the
CCW. From our previous results, it is easily seen that in the
nearest-neighbor tight-binding �NNTB� approximation,

Fp
CCW =�Qeff

8�
QFp

cav. �44�

Using the values for our CCW, we see that in the absence
of disorder, Fp

CCW�0.035Fp
cav, while with �e=3 nm and

lc=40 nm, Fp
CCW is only reduced by a factor of 2.3. Given

that the peak Purcell factor for the single cavity is6,32 Fp
cav

=6�c3Q / �Veff �0
3	3/2��1680, we see that reasonably large

Purcell factors are possible for this structure �Fp
CCW�26�. As

for the group velocity, this result is consistent with experi-
mental results in line-defect waveguides. Recent observa-
tions by Lund-Hansen et al.46 clearly see the reduction of the
expected Purcell factor near band edge.

VI. CONCLUSIONS

In conclusion, we have introduced two important results
regarding the effects of unavoidable fabrication disorder due
to the surface roughness of PhCS couple-cavity waveguides.
First, because cavity-mode fields vary strongly around the
circumference of the air voids, any correlation in the rough-
ness along the circumference will produce significant disor-
der in the form of variations in the individual cavity-mode
frequencies. Our results suggest that the influence of disorder
on the band-edge optical properties may be minimized by
using cavity-mode fields that �1� weakly overlap with the
air-void boundaries or �2� vary weakly on the circumference
of the air-void boundaries. Given that the pool of high-Q
PhCS cavity modes is small and we have calculated the dis-
order in most without improving the results, it would appear
that the room for optimization is small.

The second key result is that surface roughness dramati-
cally reduces the capacity of CCWs in PhCSs to produce
slow-light and strong band-edge interactions. This is particu-
larly easy to see in a CCW as the band-edge broadening of
the DOS can be simply parametrized in terms of the disorder.
In a state-of-the-art PhCS, the smallest group velocity
achievable is around c /120, while the disorder is an order of
magnitude greater than that required to achieve strong band-
edge coupling with a QD. Even if surface roughness could be
reduced to atomic scales, the improvements would not seem
to be sufficient to allow strong band-edge coupling in the
structure investigated. However, even with disorder, CCWs
may still be good candidates for single-photon sources due to
the reasonable Purcell factor and directional emission, al-
though with a caveat that the propagation mode is then very
lossy. In addition, while we find that the effect of disorder on
the band-edge DOS is significant, at band center the DOS is
largely insensitive–though either region will inevitably result
in enhanced disorder-induced propagation loss if used in a
slow-light regime.25,26

Last, but not least, our results motivate the essential need
for experimentalists to present an ensemble of measurements
on nominally identical samples, which is critically important
for future applications. Indeed, this latter point is generally
true for all PhCS structures.
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